- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Allen, James (1)
-
Belkin, Daniel (1)
-
Chong, Frederic T (1)
-
Clark, Bryan K (1)
-
Fefferman, Bill (1)
-
Ghosh, Soumik (1)
-
Kang, Christopher (1)
-
Lin, Sophia (1)
-
Sud, James (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Unitary -designs are distributions on the unitary group whose first moments appear maximally random. Previous work has established several upper bounds on the depths at which certain specific random quantum circuit ensembles approximate -designs. Here we show that these bounds can be extended to any fixed architecture of Haar-random two-site gates. This is accomplished by relating the spectral gaps of such architectures to those of one-dimensional brickwork architectures. Our bound depends on the details of the architecture only via the typical number of layers needed for a block of the circuit to form a connected graph over the sites. When this quantity is bounded, the circuit forms an approximate -design in at most linear depth. We give numerical evidence for a stronger bound that depends only on the number of connected blocks into which the architecture can be divided. We also give an implicit bound for nondeterministic architectures in terms of properties of the corresponding distribution over fixed architectures. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available December 1, 2025
An official website of the United States government
